澎湃新闻记者 王心馨 虞涵棋

伦敦当地时间10月18日18:00(北京时间19日01:00),AlphaGo再次登上世界顶级科学杂志——《自然》。

一年多前,AlphaGo便是2016年1月28日当期的封面文章,Deepmind公司发表重磅论文,介绍了这个击败欧洲围棋冠军樊麾的人工智能程序。

今年5月,以3:0的比分赢下中国棋手柯洁后,AlphaGo宣布退役,但DeepMind公司并没有停下研究的脚步。伦敦当地时间10月18日,DeepMind团队公布了最强版AlphaGo ,代号AlphaGo Zero。它的独门秘籍,是“自学成才”。而且,是从一张白纸开始,零基础学习,在短短3天内,成为顶级高手。

团队称,AlphaGo Zero的水平已经超过之前所有版本的AlphaGo。在对阵曾赢下韩国棋手李世石那版AlphaGo时,AlphaGo Zero取得了100:0的压倒性战绩。DeepMind团队将关于AlphaGo Zero的相关研究以论文的形式,刊发在了10月18日的《自然》杂志上。

“AlphaGo在两年内达到的成绩令人震惊。现在,AlphaGo Zero是我们最强版本,它提升了很多。Zero提高了计算效率,并且没有使用到任何人类围棋数据,”AlphaGo之父、DeepMind联合创始人兼CEO 戴密斯·哈萨比斯(Demis Hassabis)说,“最终,我们想要利用它的算法突破,去帮助解决各种紧迫的现实世界问题,如蛋白质折叠或设计新材料。如果我们通过AlphaGo,可以在这些问题上取得进展,那么它就有潜力推动人们理解生命,并以积极的方式影响我们的生活。”

不再受人类知识限制,只用4个TPU

AlphaGo此前的版本,结合了数百万人类围棋专家的棋谱,以及强化学习的监督学习进行了自我训练。

在战胜人类围棋职业高手之前,它经过了好几个月的训练,依靠的是多台机器和48个TPU(谷歌专为加速深层神经网络运算能力而研发的芯片)。

AlphaGo Zero的能力则在这个基础上有了质的提升。最大的区别是,它不再需要人类数据。也就是说,它一开始就没有接触过人类棋谱。研发团队只是让它自由随意地在棋盘上下棋,然后进行自我博弈。值得一提的是,AlphaGo Zero还非常“低碳”,只用到了一台机器和4个TPU,极大地节省了资源。

AlphaGo Zero强化学习下的自我对弈。
AlphaGo Zero强化学习下的自我对弈

经过几天的训练,AlphaGo Zero完成了近5百万盘的自我博弈后,已经可以超越人类,并击败了此前所有版本的AlphaGo。DeepMind团队在官方博客上称,Zero用更新后的神经网络和搜索算法重组,随着训练地加深,系统的表现一点一点地在进步。自我博弈的成绩也越来越好,同时,神经网络也变得更准确。

AlphaGo Zero习得知识的过程
AlphaGo Zero习得知识的过程

“这些技术细节强于此前版本的原因是,我们不再受到人类知识的限制,它可以向围棋领域里最高的选手——AlphaGo自身学习。” AlphaGo团队负责人大卫·席尔瓦(Dave Sliver)说。

据大卫·席尔瓦介绍,AlphaGo Zero使用新的强化学习方法,让自己变成了老师。系统一开始甚至并不知道什么是围棋,只是从单一神经网络开始,通过神经网络强大的搜索算法,进行了自我对弈。

随着自我博弈的增加,神经网络逐渐调整,提升预测下一步的能力,最终赢得比赛。更为厉害的是,随着训练的深入,DeepMind团队发现,AlphaGo Zero还独立发现了游戏规则,并走出了新策略,为围棋这项古老游戏带来了新的见解。

自学3天,就打败了旧版AlphaGo

除了上述的区别之外,AlphaGo Zero还在3个方面与此前版本有明显差别。

AlphaGo-Zero的训练时间轴
AlphaGo-Zero的训练时间轴

首先,AlphaGo Zero仅用棋盘上的黑白子作为输入,而前代则包括了小部分人工设计的特征输入。

其次,AlphaGo Zero仅用了单一的神经网络。在此前的版本中,AlphaGo用到了“策略网络”来选择下一步棋的走法,以及使用“价值网络”来预测每一步棋后的赢家。而在新的版本中,这两个神经网络合二为一,从而让它能得到更高效的训练和评估。

第三,AlphaGo Zero并不使用快速、随机的走子方法。在此前的版本中,AlphaGo用的是快速走子方法,来预测哪个玩家会从当前的局面中赢得比赛。相反,新版本依靠地是其高质量的神经网络来评估下棋的局势。

AlphaGo几个版本的排名情况。
AlphaGo几个版本的排名情况

据哈萨比斯和席尔瓦介绍,以上这些不同帮助新版AlphaGo在系统上有了提升,而算法的改变让系统变得更强更有效。

经过短短3天的自我训练,AlphaGo Zero就强势打败了此前战胜李世石的旧版AlphaGo,战绩是100:0的。经过40天的自我训练,AlphaGo Zero又打败了AlphaGo Master版本。“Master”曾击败过世界顶尖的围棋选手,甚至包括世界排名第一的柯洁。

对于希望利用人工智能推动人类社会进步为使命的DeepMind来说,围棋并不是AlphaGo的终极奥义,他们的目标始终是要利用AlphaGo打造通用的、探索宇宙的终极工具。AlphaGo Zero的提升,让DeepMind看到了利用人工智能技术改变人类命运的突破。他们目前正积极与英国医疗机构和电力能源部门合作,提高看病效率和能源效率。

10 收藏


直接登录
最新评论
  • 青梅煮酒 Java工程师 10/20

    没什么意义吧,阿尔法狗就是在升级难道还能产生思想和感情吗,只不过是计算能力比较强而已

  • cnpollux 软件开发 10/20

    666啊,人类真成多余的了。。。

  • scixgo   10/22

    "最有趣的是证明了人类经验由于样本空间大小的限制,往往都收敛于局部最优而不自知(或无法发现),而机器学习可以突破这个限制,不再被人类认知所局限,能够发现新知识,发展新策略。"

推荐关注